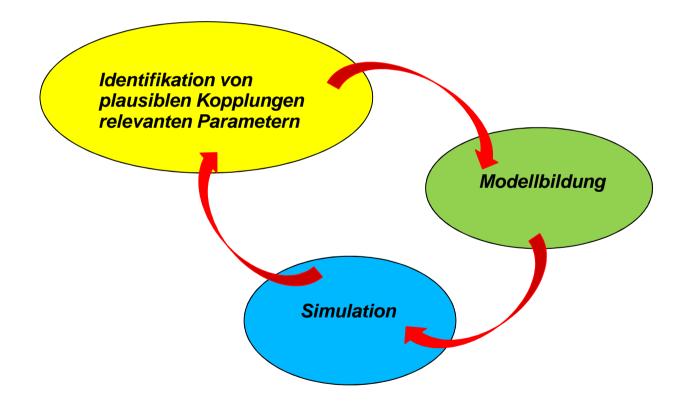


"Neue Trends für *in vivo* Modelle und verknüpfte Simulationen"

-Neuartiges implantierbares EEG Telemetriesystem für Mäuse-


Herkömmliche neurophysiologische in vitro und in vivo EEG Messungen

- 1. neuronale Einzelzellen in Zellkultur
- 2. Elektrophysiologische Untersuchungen an Hirnschnitten
- 3. Elektrophysiologische Untersuchungen / EEG an in vivo Modellen

Mathematische Modellierung

Modellsimulation mittels in vivo EEG Messungen

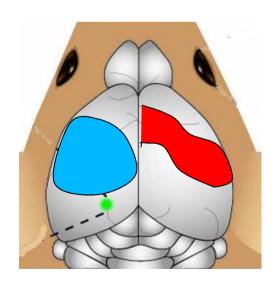
Ziel: mathematische Modelle zur Simulation Event basierter, neurophysiologischer Prozesse

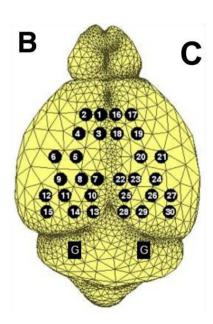
Anforderungen an das mathematische Modell:

- das Tier darf in seinen natürlichen Verhalten nicht gestört werden
- das Tier muss ungestört Verhaltenstests durchführen können (Events)
- äußere Einflüsse müssen standardisierbar sein
- Messvorgang darf nur kontrollierbaren Einflüssen unterliegen

ein geschlossenen System mit kontrollierbaren Parametern, dass sich mathematisch modellieren lässt und für Simulationen geeignet ist

Modellcharakteristik



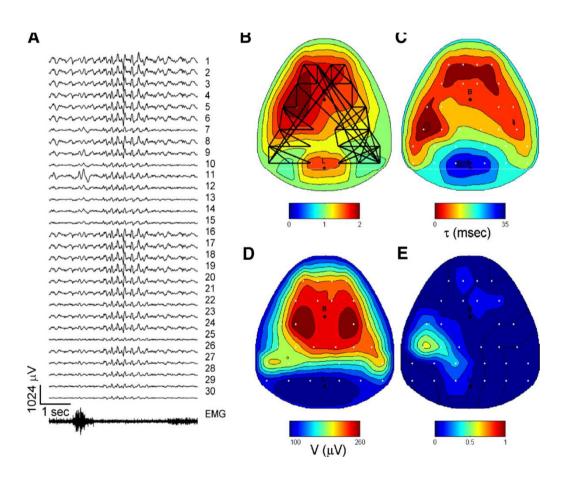

das mathematische Modell wird durch folgende Merkmale definiert

- 1. nichtlineares Modell
- 2. dynamisches Modell
- 3. stochastisches / ggf. numerisches Modell

EEG Elektrodenposition bei Alzheimer Mausmodellen

- Neocortex ist an jeder Stelle messbar
- Projektion des visuellen Neocortex
- Projektion des Hippocampus

Aufbau des EEG Telemetrie-Systems


- implantierte Elektrodenmatte
 - Form und Anordnung wird entsprechend der regiones of interest (ROI) variiert

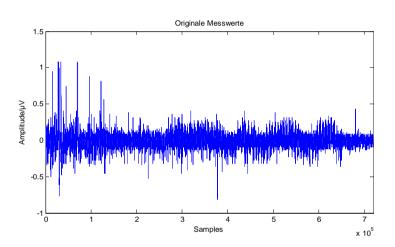
- implantierter Mikrochip + Transceivereinheit
- induktive Stromversorgung + Akkupuffer
- 4. externe Auswerteeinheit (telemetrische Datenerfassung)

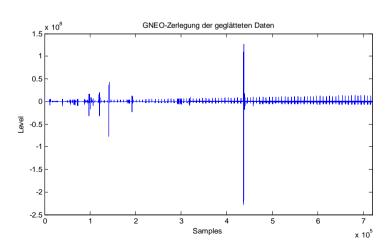
Varianten des EEG zur Arraybildung

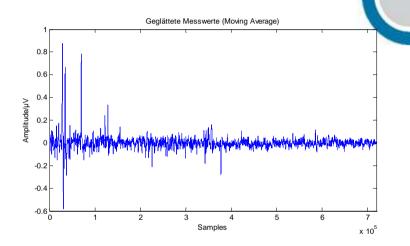
Jee Hyun Choi, Klaus Peter Koch, Wigand Poppendieck, Mina Lee and Hee-SupShin J Neurophysiol 104:1825-1834, 2010. First published Jul 7, 2010; doi:10.1152/jn.00188.2010

Einflussfaktoren auf das EEG

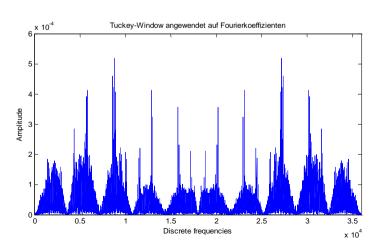
mögliche Störquellen


- Biologische Artefakte (z.B. Muskelaktivitäten, Blinzeln, Kieferbewegungen, Pulswellen)
- Technische Artefakte (z.B. elektrische Geräte, Netzbrummen, schlechtsitzende Elektroden, elektrostatische Potentiale)
- Äußere Einflussfaktoren (z.B. Raumtemperatur und Luftfeuchte, Tageszeit, Schallpegel und Art der Geräusche im Untersuchungsraum)


Fundamentale Arbeitsschritte zur EEG Datenanalyse:



- Glättung der Datenreihe (Moving Average)
- Segmentierung der "geglätteten" Daten (GNEO)
- Fouriertransformation der Teilabschnitte
- Filterung der Koeffizienten (Tuckey-window, Blackman-Window)
- Peak finding (MATLAB)


Grafische EEG Auswertung

DIAGNOSTICS

Das Projekt wird gefördert vom Bundeswirtschaftsministerium als ZIM-Projekt: Nr. KF 2192704

Projektpartner:

- Fraunhoferinstitut für Integrierte Schaltungen IIS, Erlangen
 - Dr. Johann Hauer
 - Haiyan Zhou
 - Matthias Voelker
- Institut für Neurophysiologie der Universitätsmedizin der Johannes Gutenberg Universität Mainz
 - Dr. Jürgen Bergeler
 - Andre Möhl
- mfd- diagnostics GmbH Wendelsheim / BT Luckenwalde
 - Stefanie Beerens
 - Alexander Jende
 - Jochen Querengässer
 - Daniel Lecher

Vielen Dank für Ihre Aufmerksamkeit

